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Cohomology

Recall last time the de Rham cohomology: the set of closed forms which are not

exact. This is very vague, and so we will define it now:

Definition 0.1. Given a smooth manifold, the de Rham cohomology group is

the set

Closed Forms/ ∼

where two closed forms are equivalent iff they differ by an exact form. More

precisely,

Hk
dR(M) = {ω ∈ Ωk(M) : dω = 0}/{α ∈ Ωk(M) : α = dβ}

This can be seen as fairly natural, since two closed forms that differ by an

exact form represent the same “obstruction”.

An example of the de Rham cohomology of a space is R2 − {0}. The 1-

dimensional classes are R-linear combinations of [0], [dθ], though c[0] = 0[dθ] =

[0] and hence this is just R-linear combinations of [dθ]. Thus

H1
dR(R2 − {0}) ∼= R
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Some of the most important facts are summarized as follows:

Theorem 0.1. de Rham cohomology (assuming the manifold is compact) sati-

fies the following:

1. If F : M → N is smooth, then the pullback F ∗ : Hk
dR(N) → Hk

dR(M) is

linear.

2. If F : M → N is a diffeomorphism, then Hk
dR(M) ∼= Hk

dR(N) for each k

3. If dim(M) = m, then Hk
dR(M) = 0 for k < 0 or k > m

4. H0
dR(M) ∼= RN where N is the number of connected components

5. If F,G are smoothly homotopic, then the induced maps of cohomology

groups are the same

6. The Mayer-Vietoris principle(see Lee)

Much of this holds true for general manifolds, but is technically more difficult,

and not useful in Hodge theory. For the proof see Lee.

Obstructions

Consider the following fact: On a star-shaped open subset(of Rn), every closed

form is exact. That is, if dω = 0 then ω = dα. We also have the same for every

open set diffeomorphic to a star-shaped open subset. Thus

Theorem 0.2. Given a smooth manifold M and a point x ∈ M , then there

exists U ∋ x open such that every closed form on U is exact.

Proof. Every point has a neighbourhood diffeomorphic to an open ball
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Thus we have locally every cohomology group is trivial, but we already found

an example of a manifold with non-trivial cohomology. Thus, we deduce that

there must be an obstruction to piecing together local solutions to global ones.

Let us explore this a bit more.

Suppose that M =
⋃

j Uj where Uj is diffeomorphic to a star-shaped open

subset and every intersection of two of them is connected. Then as with smooth

functions, if

αi ∈ Ωk−1(Ui) and αi − αj = 0 on Ui ∩ Uj

then α(x) = αi(x), x ∈ Ui is a differential form on the whole manifold. Thus if

dω = 0 and dαi = ω|Ui , then for ω to be exact it is sufficient for αi −αj = 0 on

Ui ∩ Uj .

On the other hand let us suppose that k = 1, suppose that ω = dβ, then

d(αi − β) = 0 so that αi − β = ci = const..

Hence it is necessary for there to exist constants ci such that (αi+ci)−(αj+cj) =

0, and in this case then β = {αi + ci} is well-defined with dβ = ω.

Finally, note that αi − αi = const = Kij on Ui ∩ Uj . So once we pick αi we

need to pick appropriate ci so that ci − cj = Kij .

Thus we have

Theorem 0.3. Suppose that M =
⋃

j Uj where Uj is diffeomorphic to a star-

shaped open subset and every intersection of two of them is connected. Then a

closed form ω is exact iff ∃αi ∈ Ω0(Ui) with dαi = ω|Ui and constants ci such

that

ci − cj = Kij

Two properties of Kij we should note, in general: Kij = −Kji and 0 =
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Kik +Kkj +Kji since

αi − αk + αk − αj + αj − αi = 0

In particular, every closed form yields a (non-unique) 1-cocycle, and is exact iff

this cocycle is a coboundary.

Exercise 0.1. Check that regardless of our choice of αi satisfying the require-

ments, the iff still holds. In particular, one choice is a coboundary iff any other

one is. Also, two such cocycles(choices of Kij) differ by a coboundary.

While we have assumed ω is a 1-form, some analogous conditions holds for

higher forms.

Symbols

This section will be fairly short.

Suppose that we have two vector bundles E,F equipped with smoothly

varying inner products at each point(on a Riemannian manifold we could take

any tensor bundle). Suppose that the base manifold M is Riemannian. Then

given an operator

P : Γ(E) → Γ(F )

there exists an operator P ∗ : Γ(F ) → Γ(E) given by

∫
M

⟨Pf, g⟩F dvol =

∫
M

⟨f, P ∗g⟩F dvol

If P is a differential operator then so is P ∗, and similarly the degree is

the same, and ellipticity is preserved. Furthermore, the principal symbols

σ(P ) = σ(P ∗)T , the transpose.(NOTE: THIS DEPENDS ON THE INNER

PRODUCTS AND ONLY HOLDS POINTWISE)
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Now, suppose that P = d, then it can be shown that σ(d)(x, ξ)β = ξ ∧β(x),

and σ(d∗)(x, ξ)β = ιξβ(x), and hence

σ(dd∗ + dd∗)(x, ξ) = (ξ ∧ ∗) ◦ ιξ + ιξ ◦ (ξ ∧ ∗) = |ξ|2

We see immediately that dd∗ + dd∗ is elliptic. We may use that

σ(dd∗ + dd∗) = (σ(d+ d∗))2

to also conclude the first order operator d+ d∗ : Ω∗(M) → Ω∗(M) is elliptic.

Exercise 0.2. Prove this by working in local coordinates. What is |ξ|2?

One final thing to note is the following: If P is first-order elliptic, then

∥u∥H1 ≤ C(∥u∥L2 + ∥Pu∥L2)

thus with a possibly different constant

1

C
(∥u∥L2 + ∥du∥L2 + ∥d∗u∥L2) ≤ ∥u∥H1 ≤ C(∥u∥L2 + ∥du∥L2 + ∥d∗u∥L2)
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